If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=41
We move all terms to the left:
b^2-(41)=0
a = 1; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·1·(-41)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*1}=\frac{0-2\sqrt{41}}{2} =-\frac{2\sqrt{41}}{2} =-\sqrt{41} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*1}=\frac{0+2\sqrt{41}}{2} =\frac{2\sqrt{41}}{2} =\sqrt{41} $
| 5/6x+9=4 | | 38-7x=-4(8x+3) | | 22=8u+6(u+2) | | 4x+8=6(x-1)-2x | | 8.8+z=19.4 | | Y=1/3x-19 | | u-3+ -4= -2 | | 24-8a=-8(a-2) | | 8+2x-1=128x-3 | | 2/5(3-m)-1/2(4-3m)=1/10(6m+17) | | -6+-2w=-10 | | 2(x^2-3x+4)+6x=8 | | x*(5/4)=6 | | 253x=125x-1 | | -1/8x=18. | | -19=x/18 | | x(3x+2)-3(x^2+x+5)=0 | | 10x+1=1002 | | 28+x=(30+x)0.95 | | (7x6)=3 | | 2r-7=20-7r | | 9x+5=27x-3 | | p2– 6= -5 | | p2–6=-5 | | 6+2x=1/2(12=4x) | | 4h-13h=-9h | | 3x^2-(x+5)(3x-7)=0 | | 5=b-4 | | 5.1y=–0.3y–21.6 | | 16x+9=44x+1 | | 44=w/2 | | f-2+3=5 |